login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353801
a(n) = A049559(n) / A187730(n), where A049559(n) and A187730(n) are the greatest common divisors between Euler phi(n) and n-1, and between Carmichael lambda(n) and n-1, respectively.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
OFFSET
1,21
LINKS
MATHEMATICA
a[n_] := GCD[n - 1, EulerPhi[n]] / GCD[n - 1, CarmichaelLambda[n]]; Array[a, 100] (* Amiram Eldar, May 13 2022 *)
PROG
(PARI)
A049559(n) = gcd(n-1, eulerphi(n));
A187730(n) = gcd(lcm(znstar(n)[2]), n-1); \\ From A187730
A353801(n) = (A049559(n) / A187730(n));
CROSSREFS
Cf. A280262 (positions of terms > 1).
Cf. also A034380.
Sequence in context: A287656 A043286 A172098 * A333254 A204162 A266227
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 13 2022
STATUS
approved