login
A353753
a(n) = phi(sigma(n)) - Product_{p^e||n} phi(sigma(p^e)), where n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n.
8
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 8, 4, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 8, 6, 8, 0, 0, 0, 12, 8, 0, 16, 0, 0, 0, 8, 0, 0, 0, 0, 12, 6, 0, 0, 16, 0, 16, 8, 0, 24, 0, 0, 0, 0, 12, 32, 0, 0, 16, 32, 0, 0, 0, 0, 0, 0, 16, 24, 0, 0, 0, 12, 0, 48, 24, 0, 16, 16, 0, 24, 24, 0, 32, 16, 16, 0, 0, 36
OFFSET
1,10
FORMULA
a(n) = A062401(n) - A353752(n).
PROG
(PARI)
A062401(n) = eulerphi(sigma(n));
A353753(n) = { my(f = factor(n)); A062401(n)-prod(k=1, #f~, A062401(f[k, 1]^f[k, 2])); };
CROSSREFS
Cf. A336547 (positions of 0's), A336548 (positions of terms > 0).
Cf. also A353803.
Sequence in context: A083804 A341840 A028597 * A028617 A261470 A006792
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 08 2022
STATUS
approved