login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028597
Expansion of theta_3(z) * theta_3(8*z) + theta_2(z) * theta_2(8*z) in powers of q^(1/4).
1
1, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0, 0
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(q) * phi(q^32) - 2 * q * f(-q^8) * f(-q^16) = phi(q^4) * phi(q^32) + 4 * q^9 * phi(q^8) * psi(q^64) in powers of q where phi(), psi(), f() are Ramanujan theta functions. - Michael Somos, Jun 24 2011
G.f. is a period 1 Fourier series which satisfies f(-1 / (128 t)) = 128^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 24 2011
EXAMPLE
G.f. = 1 + 2*q^4 + 4*q^9 + 2*q^16 + 4*q^17 + 2*q^32 + 4*q^33 + 6*q^36 + 4*q^48 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^32] - 2 q QPochhammer[ q^8] QPochhammer[ q^16], {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum( k=1, sqrtint( n), 2 * x^k^2, 1 + A) * sum( k=1, sqrtint( n\32), 2 * x^(32*k^2), 1 + A) - 2 * x * eta(x^8 + A) * eta(x^16 + A), n))}; /* Michael Somos, Jun 24 2011 */
CROSSREFS
Sequence in context: A348271 A083804 A341840 * A353753 A028617 A261470
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved