login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353689
Convolution of A000716 and the positive integers.
1
1, 5, 18, 53, 139, 333, 748, 1592, 3246, 6379, 12152, 22524, 40764, 72213, 125505, 214378, 360473, 597450, 977196, 1578852, 2522157, 3986658, 6239619, 9675801, 14874445, 22679693, 34314378, 51539173, 76875314, 113913453, 167741728, 245534597, 357361857, 517293186
OFFSET
0,2
FORMULA
From Vaclav Kotesovec, May 11 2022: (Start)
G.f.: 1/(1-x)^2 * Product_{k>=1} 1/(1-x^k)^3.
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(5/2) * Pi^2 * sqrt(n)). (End)
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*(2+3*numtheory[sigma](j)), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, May 11 2022
MATHEMATICA
nmax = 35; CoefficientList[Series[1/(1 - x)^2 * Product[1/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 11 2022 *)
PROG
(PARI) lista(nn) = Vec(1/(eta('x+O('x^nn))^3*(1-x)^2)); \\ Michel Marcus, May 09 2022
CROSSREFS
Partial sums of A210843.
Column 1 of A353690.
Sequence in context: A226903 A056782 A178684 * A271771 A270990 A272558
KEYWORD
nonn
AUTHOR
Omar E. Pol, May 08 2022
STATUS
approved