OFFSET
1,1
COMMENTS
Does a(n) exist for all n? If m is a harmonic number (A001599) and gcd(n, m) = 1, then a(n) exists and a(n) <= m*n, since h(m*n) = h(m)*h(n) and h(m) is an integer.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..639
FORMULA
a(p) = 6*p for a prime p > 3.
EXAMPLE
a(2) = 120 since 120 is the least number > 2 such that h(120)/h(2) = (16/3)/(4/3) = 4 is an integer.
MATHEMATICA
h[n_] := DivisorSigma[0, n]/DivisorSigma[-1, n]; a[n_] := Module[{k = n + 1, hn = h[n]}, While[!IntegerQ[h[k]/hn], k++]; k]; Array[a, 30]
PROG
(Python)
from math import prod, gcd
from sympy import factorint
def A353691_helper(n):
f = factorint(n).items()
return prod(p**e*(p-1)*(e+1) for p, e in f), prod(p**(e+1)-1 for p, e in f)
def A353691(n):
Hnp, Hnq = A353691_helper(n)
g = gcd(Hnp, Hnq)
Hnp //= g
Hnq //= g
k = n+1
Hkp, Hkq = A353691_helper(k)
while (Hkp*Hnq) % (Hkq*Hnp):
k += 1
Hkp, Hkq = A353691_helper(k)
return k # Chai Wah Wu, May 07 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 04 2022
STATUS
approved