%I #32 May 11 2022 14:34:01
%S 1,5,18,53,139,333,748,1592,3246,6379,12152,22524,40764,72213,125505,
%T 214378,360473,597450,977196,1578852,2522157,3986658,6239619,9675801,
%U 14874445,22679693,34314378,51539173,76875314,113913453,167741728,245534597,357361857,517293186
%N Convolution of A000716 and the positive integers.
%F From _Vaclav Kotesovec_, May 11 2022: (Start)
%F G.f.: 1/(1-x)^2 * Product_{k>=1} 1/(1-x^k)^3.
%F a(n) ~ exp(Pi*sqrt(2*n)) / (2^(5/2) * Pi^2 * sqrt(n)). (End)
%p a:= proc(n) option remember; `if`(n=0, 1, add(
%p a(n-j)*(2+3*numtheory[sigma](j)), j=1..n)/n)
%p end:
%p seq(a(n), n=0..35); # _Alois P. Heinz_, May 11 2022
%t nmax = 35; CoefficientList[Series[1/(1 - x)^2 * Product[1/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, May 11 2022 *)
%o (PARI) lista(nn) = Vec(1/(eta('x+O('x^nn))^3*(1-x)^2)); \\ _Michel Marcus_, May 09 2022
%Y Partial sums of A210843.
%Y Column 1 of A353690.
%K nonn
%O 0,2
%A _Omar E. Pol_, May 08 2022