login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353639
a(n) = 1 if n is odd and A064989(sigma(n)) > A064989(n), otherwise 0. Here A064989 shifts the prime factorization one step towards lower primes, and sigma is the sum of divisors function.
3
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1
OFFSET
1
FORMULA
For n > 1, a(n) = A000035(n) * (1-A348737(A064989(n))) = A000035(n) - A353638(n). [Conjectured, see comments in A336702]
PROG
(PARI)
A064989(n) = { my(f=factor(n>>valuation(n, 2))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
A353639(n) = ((n%2) && (A064989(sigma(n))>A064989(n)));
CROSSREFS
Characteristic function of A348749 (see also A348739).
Sequence in context: A369640 A037816 A297038 * A353569 A353477 A044939
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 04 2022
STATUS
approved