login
A348749
Odd numbers k for which A064989(sigma(k)) > A064989(k), where A064989 shifts the prime factorization one step towards lower primes, and sigma is the sum of divisors function.
11
9, 25, 45, 49, 75, 81, 117, 121, 225, 243, 289, 325, 333, 405, 441, 529, 549, 605, 625, 657, 675, 729, 841, 925, 1053, 1089, 1125, 1215, 1225, 1413, 1445, 1521, 1525, 1575, 1665, 1681, 1737, 1825, 1875, 2025, 2205, 2401, 2475, 2493, 2601, 2817, 2825, 2925, 2997, 3025, 3033, 3125, 3249, 3481, 3573, 3645, 3675, 3789
OFFSET
1,1
COMMENTS
Sequence obtained when A003961 is applied to A348739 and the terms are sorted into ascending order.
From Robert Israel, Nov 12 2024: (Start)
If a and b are terms and are coprime, then a * b is a term.
If p > 2 is in A053182, Legendre's conjecture implies p^2 is in this sequence. (End)
MAPLE
g:= prevprime: g(2):= 1:
f:= proc(n) local F, t;
F:= ifactors(n)[2];
mul(g(t[1])^t[2], t=F)
end proc:
select(t -> f(numtheory:-sigma(t)) > f(t), [seq(i, i=1..4000, 2)]); # Robert Israel, Nov 12 2024
MATHEMATICA
f[2, e_] := 1; f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[1, 4000, 2], s[DivisorSigma[1, #]] > s[#] &] (* Amiram Eldar, Nov 04 2021 *)
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
isA348749(n) = ((n%2)&&(A064989(sigma(n)) > A064989(n)));
CROSSREFS
Cf. A000203, A003961, A053182, A064989, A326042, A348739, A348748, A348939 (terms of A228058 that occur here).
Cf. also A348742, A348754.
Sequence in context: A227518 A031036 A371086 * A291259 A051132 A247687
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 02 2021
STATUS
approved