login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353497
The smallest prime factor of n, reduced modulo 4, with a(1) = 1.
2
1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3
OFFSET
1,2
LINKS
FORMULA
a(n) = A010873(A020639(n)).
For all n >= 1, A010873(n) = A010873(A353490(n)*a(n)).
For all n >= 1, a(2n-1) = A010873(A353490(2n-1)*(2n-1)).
For all n >= 1, a(A276086(n)) = A353526(n).
MATHEMATICA
a[n_] := Mod[FactorInteger[n][[1, 1]], 4]; Array[a, 100] (* Amiram Eldar, Apr 26 2022 *)
PROG
(PARI)
A020639(n) = if(1==n, n, vecmin(factor(n)[, 1]));
A353497(n) = (A020639(n)%4);
(Python)
from sympy import factorint
def a(n): return 1 if n==1 else (2 if n%2==0 else min(factorint(n))%4)
print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Apr 26 2022
CROSSREFS
Cf. also A353493.
Sequence in context: A032452 A084199 A277745 * A320858 A304111 A030314
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 26 2022
STATUS
approved