

A304111


Partial sums of f(n) = (1)^(1A304109(n)).


4



0, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 2, 3, 2, 1, 2, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Start from the initial value a(0) = 0, after which, for n > 0, each successive term a(n) is either one more or one less than the previous term a(n1), depending on whether the binary expansion of n encodes a squarefree (0,1)polynomial when the factorization is done in polynomial ring GF(2)[X]], or whether it encodes a polynomial where at least one of its irreducible divisors occurs more than once.
The first negative term occurs as a(153) = 1. See also comments at A304010.


LINKS

Antti Karttunen, Table of n, a(n) for n = 0..65537
Index entries for sequences related to polynomials in ring GF(2)[X]


FORMULA

a(0) = 0, and for n > 0, a(n) = a(n1) + (1)^(1A304109(n)).
For n >= 1, a(n) = (2*A304110(n))  n.


PROG

(PARI)
up_to = 128;
A304109(n) = { my(fm=factor(Pol(binary(n))*Mod(1, 2))); for(k=1, #fm~, if(fm[k, 2] > 1, return(0))); (1); };
prepare_v304110(up_to) = { my(v=vector(up_to), c=0); for(n=1, up_to, c += A304109(n); v[n] = c); (v); };
v304110 = prepare_v304110(up_to);
A304110(n) = v304110[n];
A304111(n) = ((2*A304110(n))  n);
\\ Or just as:
c=0; for(n=0, up_to, if(n>0, c+=((1)^(1A304109(n)))); print1(c, ", "));


CROSSREFS

Cf. A304107, A304108, A304109, A304110.
Sequence in context: A084199 A277745 A320858 * A030314 A269624 A098236
Adjacent sequences: A304108 A304109 A304110 * A304112 A304113 A304114


KEYWORD

sign


AUTHOR

Antti Karttunen, May 13 2018


STATUS

approved



