login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353012
Numbers N such that gcd(N - d, N*d) >= d^2, where d = A000005(N) is the number of divisors of N.
1
1, 2, 136, 156, 328, 444, 584, 600, 712, 732, 776, 876, 904, 1096, 1164, 1176, 1308, 1544, 1864, 1884, 1928, 2056, 2172, 2248, 2316, 2504, 2601, 2696, 2748, 2824, 2892, 2904, 3208, 3240, 3249, 3272, 3324, 3464, 3592, 3656, 3756, 4044, 4056, 4168, 4188, 4476, 4552, 4616
OFFSET
1,2
COMMENTS
As d^2 | N-d we have N = k*d^2 + d for some k >= 0 and d > 1. So gcd(k*d^2 + d - d, (N*d^2 + d)*d) = gcd(k*d^2, k*d^3 + d^2) = gcd(k*d^2, d^2) = d^2. So for any N such that d^2 | gcd(N - d, N*d) we have gcd(N - d, N*d) = d^2. - David A. Corneth, Apr 20 2022
Since gcd(N - d, N*d) is never larger than d^2 (if N = n*g, d = f*g with gcd(n,f) = 1, then gcd(N - d, N*d) = g*gcd(n-f,n*f*g) = g*gcd(n-f, f*f*g) <= g*g, since by assumption, no factor of f divides n), so one can also replace "=" by ">=" in the definition.
LINKS
FORMULA
For all m in A033950, the sequence contains all numbers m*p^k with k = m/d(m) - 1, and p^k == 1 (mod m), in particular 8*A007519 and 12*A068228 (k = 1, m = 8 and 12), 9*A129805^2, 18*A129805^2 and 24*A215848^2 (k = 2, m = 9, 18 and 24, A^2 = {x^2, x in A}), etc.
EXAMPLE
N = 1 is in the sequence because d(N) = 1, gcd(1 - 1, 1*1) = 1 = d^2.
N = 2 is in the sequence because d(N) = 2, gcd(2 - 2, 2*2) = 4 = d^2.
N = 136 = 8*17 is in the sequence because d(N) = 4*2 = 8, gcd(8*17 - 8, 8*17*8) = gcd(8*16, 8*8*17) = 8*8 = d^2. Similarly for N = 8*p with any prime p = 8*k + 1.
N = 156 = 2^2*3*13 is in the sequence because d(n) = 3*2*2 = 12, gcd(12*13 - 12, 12*13*12) = gcd(12*12, 12*12*13) = 12*12 = d^2. Similarly for any N = 12*p with prime p = 12*k + 1.
More generally, when N = m*p^k with p^k == 1 (mod m) and m = (k+1)*d(m), then d(N) = d(m)*(k+1) = m and gcd(n - d, n*d) = gcd(m*p^k - m, m*p^k*m) = m*gcd(p^k - 1, p^k*m) = m^2. This holds for m = 8 and 12 with k = 1, for m = 9, 18 and 24 with k = 2, etc: see sequence A033950 for the m-values.
MATHEMATICA
Select[Range[4650], GCD[#1 - #2, #1 #2] == #2^2 & @@ {#, DivisorSigma[0, #]} &] (* Michael De Vlieger, Apr 21 2022 *)
PROG
(PARI) select( {is(n, d=numdiv(n))=gcd(n-d, d^2)==d^2}, [1..10^4])
CROSSREFS
Cf. A000005 (number of divisors), A352483 (numerator of (n-d)/(n*d)), A352482 (denominator), A049820 (n - d), A146566 (n*d is divisible by n-d), A033950 (refactorable or tau numbers: d(n) | n, supersequence of this).
Sequence in context: A318965 A097641 A065963 * A226118 A216030 A216083
KEYWORD
nonn
AUTHOR
M. F. Hasler, Apr 15 2022
STATUS
approved