The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A352816 G.f. A(x) satisfies: 1 - x = Sum_{n>=0} x^n * (x^n + (-1)^n*A(x))^n. 2
 1, 2, 3, 7, 16, 40, 105, 281, 770, 2147, 6080, 17431, 50459, 147265, 432821, 1279978, 3806154, 11373668, 34136769, 102863360, 311065038, 943740309, 2871717550, 8762164066, 26801981013, 82172139800, 252470206882, 777243596670, 2397210487402, 7406340364950 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA G.f. A(x) satisfies: (1) 1 - x = Sum_{n>=0} x^n * ( x^n + (-1)^n*A(x) )^n. (2) 1 - x = Sum_{n>=0} x^(n*(n+1)) / ( 1 + (-1)^n*x^(n+1)*A(x) )^(n+1). EXAMPLE G.f.: A(x) = 1 + 2*x + 3*x^2 + 7*x^3 + 16*x^4 + 41*x^5 + 107*x^6 + 286*x^7 + 782*x^8 + 2179*x^9 + 6172*x^10 + 17702*x^11 + 51272*x^12 + ... where 1 - x = 1 + x*(x - A(x)) + x^2*(x^2 + A(x))^2 + x^3*(x^3 - A(x))^3 + x^4*(x^4 + A(x))^4 + x^5*(x^5 - A(x))^5 + x^6*(x^6 + A(x))^6 + ... Also, 1 - x = 1/(1 + x*A(x)) + x^2/(1 - x^2*A(x))^2 + x^6/(1 + x^3*A(x))^3 + x^12/(1 - x^4*A(x))^4 + x^20/(1 + x^5*A(x))^5 + ... Specific values. A(x) = 2 at x = 0.2515345800906597549860933755999098710430442043412... A(x) = 3 at x = 0.3019496486281905495940467534583642873678976347045... PROG (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, #A, x^m * (x^m + (-1)^m*Ser(A))^m ), #A)); A[n+1]} for(n=0, 40, print1(a(n), ", ")) (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, sqrtint(#A), x^((m+1)*m)/(1 + (-1)^m*x^(m+1)*Ser(A))^(m+1) ), #A)); A[n+1]} for(n=0, 40, print1(a(n), ", ")) CROSSREFS Cf. A352817, A317997. Sequence in context: A334398 A027118 A114582 * A107387 A091487 A247332 Adjacent sequences:  A352813 A352814 A352815 * A352817 A352818 A352819 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 05 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 00:34 EDT 2022. Contains 356067 sequences. (Running on oeis4.)