The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A352815 G.f. A(x) satisfies: 1 + x = Sum_{n>=0} (-1)^n * (x^n + A(x))^(n+1). 1
 1, 4, 15, 62, 263, 1153, 5187, 23792, 110898, 523773, 2501268, 12057407, 58593831, 286743949, 1411905287, 6989973590, 34773216944, 173737947911, 871442154413, 4386482848975, 22150822685669, 112185906664804, 569713055956736, 2900350345874632, 14799219791196091 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Paul D. Hanna, Table of n, a(n) for n = 1..500 FORMULA G.f. A(x) satisfies: (1) 1 + x = Sum_{n>=0} (-1)^n * (x^n + A(x))^(n+1). (2) -x = Sum_{n>=0} (-1)^n * x^(n*(n-1)) / (1 + x^n*A(x))^(n+1). EXAMPLE G.f.: A(x) = x + 4*x^2 + 15*x^3 + 62*x^4 + 263*x^5 + 1153*x^6 + 5187*x^7 + 23792*x^8 + 110898*x^9 + 523773*x^10 + ... where 1 + x = (1 + A(x)) - (x + A(x))^2 + (x^2 + A(x))^3 - (x^3 + A(x))^4 + (x^4 + A(x))^5 - (x^5 + A(x))^6 + (x^6 + A(x))^7 + ... also -x = 1/(1 + A(x)) - 1/(1 + x*A(x))^2 + x^2/(1 + x^2*A(x))^3 - x^6/(1 + x^3*A(x))^4 + x^12/(1 + x^4*A(x))^5 - x^20/(1 + x^5*A(x))^6 + ... Specific values. A(x) = 1 at x = 0.1834970136530040531685106821803389905413247357336272... PROG (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = -polcoeff( sum(m=0, #A, (-1)^m*(x^m + x*Ser(A))^(m+1) ), #A)); A[n]} for(n=1, 40, print1(a(n), ", ")) (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, sqrtint(#A)+1, (-1)^m*x^(m*(m-1))/(1 + x^m*x*Ser(A))^(m+1) ), #A)); A[n]} for(n=1, 40, print1(a(n), ", ")) CROSSREFS Cf. A317997. Sequence in context: A151484 A275871 A007161 * A007167 A036728 A027216 Adjacent sequences: A352812 A352813 A352814 * A352816 A352817 A352818 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 04 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 15:04 EDT 2024. Contains 372826 sequences. (Running on oeis4.)