OFFSET
1,2
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..500
FORMULA
G.f. A(x) satisfies:
(1) 1 + x = Sum_{n>=0} (-1)^n * (x^n + A(x))^(n+1).
(2) -x = Sum_{n>=0} (-1)^n * x^(n*(n-1)) / (1 + x^n*A(x))^(n+1).
EXAMPLE
G.f.: A(x) = x + 4*x^2 + 15*x^3 + 62*x^4 + 263*x^5 + 1153*x^6 + 5187*x^7 + 23792*x^8 + 110898*x^9 + 523773*x^10 + ...
where
1 + x = (1 + A(x)) - (x + A(x))^2 + (x^2 + A(x))^3 - (x^3 + A(x))^4 + (x^4 + A(x))^5 - (x^5 + A(x))^6 + (x^6 + A(x))^7 + ...
also
-x = 1/(1 + A(x)) - 1/(1 + x*A(x))^2 + x^2/(1 + x^2*A(x))^3 - x^6/(1 + x^3*A(x))^4 + x^12/(1 + x^4*A(x))^5 - x^20/(1 + x^5*A(x))^6 + ...
Specific values.
A(x) = 1 at x = 0.1834970136530040531685106821803389905413247357336272...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = -polcoeff( sum(m=0, #A, (-1)^m*(x^m + x*Ser(A))^(m+1) ), #A)); A[n]}
for(n=1, 40, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(m=0, sqrtint(#A)+1, (-1)^m*x^(m*(m-1))/(1 + x^m*x*Ser(A))^(m+1) ), #A)); A[n]}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 04 2022
STATUS
approved