login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114582
Number of Motzkin paths of length n having no UDH's starting at level 0 (U=(1,1), H=(1,0), D=(1,-1)).
1
1, 1, 2, 3, 7, 16, 40, 100, 256, 663, 1741, 4620, 12376, 33416, 90853, 248515, 683429, 1888449, 5240509, 14598709, 40810390, 114447429, 321885675, 907723460, 2566079622, 7270598910, 20643413513, 58727234739, 167373377361
OFFSET
0,3
COMMENTS
Column 0 of A114581.
FORMULA
G.f.: 2/(1 - z + 2z^3 + sqrt(1-2z-3z^2)).
a(n) = Sum(k=1..n/3+1, (k*Sum(j=0..n-2*k+3, binomial(j,k+2*j-n-3)*binomial(n-2*k+3,j)))/(n-2*k+3)*(-1)^(k-1)). - Vladimir Kruchinin, Oct 22 2011
D-finite with recurrence +(n+1)*a(n) +2*(-n+1)*a(n-1) +2*(-2*n+1)*a(n-2) +(3*n-1)*a(n-3) +(n-1)*a(n-4) +3*(-n+1)*a(n-5)=0. - R. J. Mathar, Mar 24 2018
EXAMPLE
a(3)=3 because we have HHH, HUD, UHD, where U=(1,1), H=(1,0), D=(1,-1).
MAPLE
G:=2/(1-z+2*z^3+sqrt(1-2*z-3*z^2)): Gser:=series(G, z=0, 35): 1, seq(coeff(Gser, z^n), n=1..32);
PROG
(Maxima)
a(n):=sum((k*sum(binomial(j, k+2*j-n-3)*binomial(n-2*k+3, j), j, 0, n-2*k+3))/(n-2*k+3)*(-1)^(k-1), k, 1, n/3+1); /* Vladimir Kruchinin, Oct 22 2011 */
CROSSREFS
Cf. A114581.
Sequence in context: A353580 A334398 A027118 * A352816 A107387 A091487
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 09 2005
STATUS
approved