The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A352602 a(n) = 4^n*(2^(2*n+1)-1)*(2*n)!. 1
 1, 56, 11904, 5852160, 5274501120, 7606429286400, 16070664624537600, 46802060374022553600, 179724025424120905728000, 879933863508054097526784000, 5350005543376937290448240640000, 39547255119844566012586402775040000, 349281388446657765223160470894018560000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For n>0, PolyGamma(2*n,1/4) = -a(n)*Zeta(2*n+1) - A000816(n)*Pi^(2n+1) = -2^(2*n-1)*(A331839(n)*Zeta(2*n+1) + A000364(n)*Pi^(2n+1)). LINKS Table of n, a(n) for n=0..12. FORMULA a(n) = (-Pi^(2*n+1)*A000816(n) - PolyGamma(2*n,1/4))/zeta(2*n+1). a(n) = 2^(2*n-1)*A331839(n). D-finite with recurrence a(n) -40*n*(2*n-1)*a(n-1) +256*n*(n-1)*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Aug 19 2022 EXAMPLE PolyGamma(2,1/4) = -56*zeta(3) - 2*Pi^3 PolyGamma(4,1/4) = -11904*zeta(5) - 40*Pi^5 PolyGamma(6,1/4) = -5852160*zeta(7) - 1952*Pi^7 MAPLE A352602 := proc(n) 4^n*(2^(2*n+1)-1)*(2*n)! ; end proc: seq(A352602(n), n=0..30) ; # R. J. Mathar, Aug 19 2022 MATHEMATICA Table[4^n*(2^(2*n + 1) - 1)*(2*n)!, {n, 0, 12}] PROG (PARI) a(n) = n<<=1; my(f=n!<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 10:50 EDT 2023. Contains 363142 sequences. (Running on oeis4.)