login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352093
G.f. A(x,y) = lim_{N->infinity} (1 - P(N,x,y))/(2*x)^N, where P(0,x,y) = -y, and P(n+1,x,y) = sqrt(1 - 4*x + 4*x*P(n,x,y)) for n = 0..N-1.
1
1, 1, 1, 2, 1, 4, 10, 8, 2, 13, 40, 46, 24, 5, 48, 174, 256, 196, 80, 14, 162, 696, 1286, 1328, 814, 280, 42, 600, 2932, 6400, 8188, 6648, 3404, 1008, 132, 2109, 11824, 30348, 46864, 47582, 32336, 14252, 3696, 429, 7760, 48630, 142352, 256264, 311696, 263844, 154224, 59592, 13728, 1430
OFFSET
0,4
FORMULA
Column 0 = A351509.
Column 1 = A351511.
Diagonal = A000108, the Catalan numbers.
Row sums = 2^(n+1) * A006365(n), which is related to binary tree partitions.
G.f. A(x,y) has the following special values.
(1) A(x=1/8, y) = Pi^2/8 + Sum_{n>=1} y^n * 2^n * gamma(n/2)^2 / (4*n!).
(2) A(x=1/8, y) = Pi^2/8 + (Pi/2)*B(y) + C(y), where
B(y) = Sum_{n>=0} [Product_{k=0..n-1} 2*k+1]^2 * y^(2*n+1) / (2*n+1)!,
C(y) = Sum_{n>=1} [Product_{k=1..n-1} 2*k]^2 * y^(2*n) / (2*n)!.
(3) A(x=1/8, y=1/2) = Pi^2*2/9 = Pi^2/8 + Sum_{n>=1} gamma(n/2)^2 / (4*n!).
(4) A(x=1/8, y=-1/2) = Pi^2/18 = Pi^2/8 + Sum_{n>=1} (-1)^n * gamma(n/2)^2 / (4*n!).
EXAMPLE
This triangle of coefficients of x^n*y^k in A(x,y) begins:
1, 1;
1, 2, 1;
4, 10, 8, 2;
13, 40, 46, 24, 5;
48, 174, 256, 196, 80, 14;
162, 696, 1286, 1328, 814, 280, 42;
600, 2932, 6400, 8188, 6648, 3404, 1008, 132;
2109, 11824, 30348, 46864, 47582, 32336, 14252, 3696, 429;
7760, 48630, 142352, 256264, 311696, 263844, 154224, 59592, 13728, 1430;
...
The generating function begins
A(x,y) = (y + 1) + (y^2 + 2*y + 1)*x + (2*y^3 + 8*y^2 + 10*y + 4)*x^2 + (5*y^4 + 24*y^3 + 46*y^2 + 40*y + 13)*x^3 + (14*y^5 + 80*y^4 + 196*y^3 + 256*y^2 + 174*y + 48)*x^4 + (42*y^6 + 280*y^5 + 814*y^4 + 1328*y^3 + 1286*y^2 + 696*y + 162)*x^5 + (132*y^7 + 1008*y^6 + 3404*y^5 + 6648*y^4 + 8188*y^3 + 6400*y^2 + 2932*y + 600)*x^6 + (429*y^8 + 3696*y^7 + 14252*y^6 + 32336*y^5 + 47582*y^4 + 46864*y^3 + 30348*y^2 + 11824*y + 2109)*x^7 + (1430*y^9 + 13728*y^8 + 59592*y^7 + 154224*y^6 + 263844*y^5 + 311696*y^4 + 256264*y^3 + 142352*y^2 + 48630*y + 7760)*x^8 + (4862*y^10 + 51480*y^9 + 248622*y^8 + 723552*y^7 + 1411452*y^6 + 1939152*y^5 + 1912716*y^4 + 1347040*y^3 + 652486*y^2 + 197080*y + 28166)*x^9 + ...
Specific values.
A(x, y=-1) = 0, for all x.
A(x=1/8, y=1/2) = Pi^2*2/9.
A(x=1/8, y=-1/2) = Pi^2/18.
At x = 1/8, the sum along column n is given by
_ Sum_{m>=0} T(m,n)/8^m = 2^n * gamma(n/2)^2 / (4*n!).
Explicitly, at x = 1/8, the sums along columns begin:
Sum_{n>=0} T(n,0)/8^n = Pi^2/8 = 1 + 1/8 + 4/8^2 + 13/8^3 + 48/8^4 + ...;
Sum_{n>=0} T(n,1)/8^n = (Pi/2) = 1 + 2/8 + 10/8^2 + 40/8^3 + 174/8^4 + ...;
Sum_{n>=0} T(n,2)/8^n = 1/2 = 1/8 + 8/8^2 + 46/8^3 + 256/8^4 + 1286/8^5 + ...;
Sum_{n>=0} T(n,3)/8^n = (Pi/2)/3! = 2/8^2 + 24/8^3 + 196/8^4 + 1328/8^5 + ...;
Sum_{n>=0} T(n,4)/8^n = 4/4! = 5/8^3 + 80/8^4 + 814/8^5 + 6648/8^6 + ...;
Sum_{n>=0} T(n,5)/8^n = (Pi/2)*9/5! = 14/8^4 + 280/8^5 + 3404/8^6 + ...;
Sum_{n>=0} T(n,6)/8^n = 64/6! = 42/8^5 + 1008/8^6 + 14252/8^7 + ...;
...
Notice that A(x=1/8, y=-1) = 0 is equivalent to
Pi^2 = Sum_{n>=1} (-2)^(n+1) * gamma(n/2)^2 / n!.
PROG
(PARI) /* Prints N Rows of this triangle: */
N = 20;
{T(n, k) = my(P = -y + x*O(x^(2*N+1)));
for(i=1, N+1, P = sqrt(1 - 4*x + 4*x*P +x*O(x^(2*N+1))); );
Axy = (1 - P)/2^(N+1)/x^(N+1); polcoeff(polcoeff(Axy, n, x), k, y)}
for(n=0, N, for(k=0, n+1, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Mar 04 2022
STATUS
approved