OFFSET
1,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of b(q) * c(q) * b(q^8) * c(q^8) / (b(q^2) * c(q^2) * b(q^4) * c(q^4)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q) * eta(q^3) * eta(q^8) * eta(q^24) / (eta(q^2) * eta(q^4) * eta(q^6) * eta(q^12)))^2 in powers of q.
Euler transform of period 24 sequence [ -2, 0, -4, 2, -2, 0, -2, 0, -4, 0, -2, 4, -2, 0, -4, 0, -2, 0, -2, 2, -4, 0, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = f(t) where q = exp(2 Pi i t).
EXAMPLE
G.f. = x - 2*x^2 + x^3 - 4*x^4 + 10*x^5 - 10*x^6 + 12*x^7 - 24*x^8 + 37*x^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q, -q] QPochhammer[ q^2, -q^2] QPochhammer[ q^3, -q^3] QPochhammer[ q^6, -q^6])^2, {q, 0, n}]; (* Michael Somos, Apr 19 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n = n-1; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A) * eta(x^8 + A) * eta(x^24 + A) / (eta(x^2 + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^12 + A)))^2, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 26 2012
STATUS
approved