login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212770
Expansion of q / (chi(q) * chi(q^2) * chi(q^3) * chi(q^6))^2 in powers of q where chi() is a Ramanujan theta function.
3
1, -2, 1, -4, 10, -10, 12, -24, 37, -44, 56, -84, 126, -160, 186, -272, 394, -466, 568, -792, 1052, -1272, 1560, -2040, 2663, -3244, 3877, -4992, 6410, -7644, 9180, -11616, 14472, -17284, 20712, -25572, 31518, -37576, 44510, -54416, 66402, -78368, 92648
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of b(q) * c(q) * b(q^8) * c(q^8) / (b(q^2) * c(q^2) * b(q^4) * c(q^4)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q) * eta(q^3) * eta(q^8) * eta(q^24) / (eta(q^2) * eta(q^4) * eta(q^6) * eta(q^12)))^2 in powers of q.
Euler transform of period 24 sequence [ -2, 0, -4, 2, -2, 0, -2, 0, -4, 0, -2, 4, -2, 0, -4, 0, -2, 0, -2, 2, -4, 0, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = f(t) where q = exp(2 Pi i t).
a(2*n) = -2 * A123647(n). a(4*n) = -4 * A123653(n).
EXAMPLE
G.f. = x - 2*x^2 + x^3 - 4*x^4 + 10*x^5 - 10*x^6 + 12*x^7 - 24*x^8 + 37*x^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q, -q] QPochhammer[ q^2, -q^2] QPochhammer[ q^3, -q^3] QPochhammer[ q^6, -q^6])^2, {q, 0, n}]; (* Michael Somos, Apr 19 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n = n-1; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A) * eta(x^8 + A) * eta(x^24 + A) / (eta(x^2 + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^12 + A)))^2, n))};
CROSSREFS
Sequence in context: A179077 A352093 A038195 * A205855 A329709 A134654
KEYWORD
sign
AUTHOR
Michael Somos, May 26 2012
STATUS
approved