login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212772
a(n) = floor((n+1)*(n-3)*(n-4)/12).
1
1, 1, 0, 0, 0, 1, 3, 8, 15, 25, 38, 56, 78, 105, 137, 176, 221, 273, 332, 400, 476, 561, 655, 760, 875, 1001, 1138, 1288, 1450, 1625, 1813, 2016, 2233, 2465, 2712, 2976, 3256, 3553, 3867, 4200, 4551, 4921, 5310, 5720, 6150, 6601, 7073, 7568, 8085, 8625, 9188, 9776, 10388, 11025, 11687, 12376, 13091, 13833, 14602, 15400, 16226
OFFSET
0,7
LINKS
Dominique Bénard, Orientable imbedding of line graphs, J. Combinatorial Theory Ser. B 24 (1978), no. 1, 34--43. MR0485482(58 #5312)
FORMULA
G.f.: (1-2*x+2*x^3-2*x^4+3*x^5)/((1+x+x^2+x^3)*(1-x)^4). [Bruno Berselli, May 26 2012]
a(n) = 1+(2*(n-5)*(n-1)*n-3*(1+(-1)^n)*(1-i^((n-1)*n)))/24, where i=sqrt(-1). [Bruno Berselli, May 26 2012]
MATHEMATICA
Table[Floor[(n + 1) (n - 3) ((n - 4)/12)], {n, 0, 60}] (* Bruno Berselli, May 26 2012 *)
PROG
(Magma) m:=61; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x+2*x^3-2*x^4+3*x^5)/((1+x+x^2+x^3)*(1-x)^4))); // Bruno Berselli, May 26 2012
(Maxima) makelist(1+(2*(n-5)*(n-1)*n-3*(1+(-1)^n)*(1-%i^((n-1)*n)))/24, n, 0, 60); /* Bruno Berselli, May 26 2012 */
CROSSREFS
Sequence in context: A274696 A367064 A022451 * A238806 A080181 A071399
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 26 2012
STATUS
approved