login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352094
Column 2 of triangle A352093.
0
1, 8, 46, 256, 1286, 6400, 30348, 142352, 652486, 2958864, 13238308, 58745872, 258345884, 1128790784, 4900778456, 21168054432, 90993848134, 389548241904, 1661387607860, 7062104700176, 29927650910900, 126478906062144, 533174476617768, 2242449423806688
OFFSET
1,2
COMMENTS
This sequence gives the coefficients of x^n*y^2 in the g.f. of triangle A352093, for n >= 1; the g.f. of triangle A352093 equals lim_{N->infinity} (1 - P(N,x,y))/(2*x)^N, where P(0,x,y) = -y, and P(n+1,x,y) = sqrt(1 - 4*x + 4*x*P(n,x,y)) for n = 0..N-1.
The two preceding columns of triangle A352093 are A351509 and A351511.
FORMULA
Sum_{n>=1} a(n)/8^n = 1/2.
EXAMPLE
G.f. A(x) = x + 8*x^2 + 46*x^3 + 256*x^4 + 1286*x^5 + 6400*x^6 + 30348*x^7 + 142352*x^8 + 652486*x^9 + 2958864*x^10 + ...
Specific values.
A(1/8) = 1/2 = 1/8 + 8/8^2 + 46/8^3 + 256/8^4 + 1286/8^5 + 6400/8^6 + ...
PROG
(PARI) {a(n) = my(A, P = -y + x*O(x^(2*n+1)));
for(i=1, n+1, P = sqrt(1 - 4*x + 4*x*P +x*O(x^(2*n+1))); );
A = subst(derivn( (1 - P)/(2*x)^(n+1) , 2, y)/2, y, 0); polcoeff(A, n, x)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 05 2022
STATUS
approved