login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x,y) = lim_{N->infinity} (1 - P(N,x,y))/(2*x)^N, where P(0,x,y) = -y, and P(n+1,x,y) = sqrt(1 - 4*x + 4*x*P(n,x,y)) for n = 0..N-1.
1

%I #9 Mar 05 2022 12:01:05

%S 1,1,1,2,1,4,10,8,2,13,40,46,24,5,48,174,256,196,80,14,162,696,1286,

%T 1328,814,280,42,600,2932,6400,8188,6648,3404,1008,132,2109,11824,

%U 30348,46864,47582,32336,14252,3696,429,7760,48630,142352,256264,311696,263844,154224,59592,13728,1430

%N G.f. A(x,y) = lim_{N->infinity} (1 - P(N,x,y))/(2*x)^N, where P(0,x,y) = -y, and P(n+1,x,y) = sqrt(1 - 4*x + 4*x*P(n,x,y)) for n = 0..N-1.

%F Column 0 = A351509.

%F Column 1 = A351511.

%F Diagonal = A000108, the Catalan numbers.

%F Row sums = 2^(n+1) * A006365(n), which is related to binary tree partitions.

%F G.f. A(x,y) has the following special values.

%F (1) A(x=1/8, y) = Pi^2/8 + Sum_{n>=1} y^n * 2^n * gamma(n/2)^2 / (4*n!).

%F (2) A(x=1/8, y) = Pi^2/8 + (Pi/2)*B(y) + C(y), where

%F B(y) = Sum_{n>=0} [Product_{k=0..n-1} 2*k+1]^2 * y^(2*n+1) / (2*n+1)!,

%F C(y) = Sum_{n>=1} [Product_{k=1..n-1} 2*k]^2 * y^(2*n) / (2*n)!.

%F (3) A(x=1/8, y=1/2) = Pi^2*2/9 = Pi^2/8 + Sum_{n>=1} gamma(n/2)^2 / (4*n!).

%F (4) A(x=1/8, y=-1/2) = Pi^2/18 = Pi^2/8 + Sum_{n>=1} (-1)^n * gamma(n/2)^2 / (4*n!).

%e This triangle of coefficients of x^n*y^k in A(x,y) begins:

%e 1, 1;

%e 1, 2, 1;

%e 4, 10, 8, 2;

%e 13, 40, 46, 24, 5;

%e 48, 174, 256, 196, 80, 14;

%e 162, 696, 1286, 1328, 814, 280, 42;

%e 600, 2932, 6400, 8188, 6648, 3404, 1008, 132;

%e 2109, 11824, 30348, 46864, 47582, 32336, 14252, 3696, 429;

%e 7760, 48630, 142352, 256264, 311696, 263844, 154224, 59592, 13728, 1430;

%e ...

%e The generating function begins

%e A(x,y) = (y + 1) + (y^2 + 2*y + 1)*x + (2*y^3 + 8*y^2 + 10*y + 4)*x^2 + (5*y^4 + 24*y^3 + 46*y^2 + 40*y + 13)*x^3 + (14*y^5 + 80*y^4 + 196*y^3 + 256*y^2 + 174*y + 48)*x^4 + (42*y^6 + 280*y^5 + 814*y^4 + 1328*y^3 + 1286*y^2 + 696*y + 162)*x^5 + (132*y^7 + 1008*y^6 + 3404*y^5 + 6648*y^4 + 8188*y^3 + 6400*y^2 + 2932*y + 600)*x^6 + (429*y^8 + 3696*y^7 + 14252*y^6 + 32336*y^5 + 47582*y^4 + 46864*y^3 + 30348*y^2 + 11824*y + 2109)*x^7 + (1430*y^9 + 13728*y^8 + 59592*y^7 + 154224*y^6 + 263844*y^5 + 311696*y^4 + 256264*y^3 + 142352*y^2 + 48630*y + 7760)*x^8 + (4862*y^10 + 51480*y^9 + 248622*y^8 + 723552*y^7 + 1411452*y^6 + 1939152*y^5 + 1912716*y^4 + 1347040*y^3 + 652486*y^2 + 197080*y + 28166)*x^9 + ...

%e Specific values.

%e A(x, y=-1) = 0, for all x.

%e A(x=1/8, y=1/2) = Pi^2*2/9.

%e A(x=1/8, y=-1/2) = Pi^2/18.

%e At x = 1/8, the sum along column n is given by

%e _ Sum_{m>=0} T(m,n)/8^m = 2^n * gamma(n/2)^2 / (4*n!).

%e Explicitly, at x = 1/8, the sums along columns begin:

%e Sum_{n>=0} T(n,0)/8^n = Pi^2/8 = 1 + 1/8 + 4/8^2 + 13/8^3 + 48/8^4 + ...;

%e Sum_{n>=0} T(n,1)/8^n = (Pi/2) = 1 + 2/8 + 10/8^2 + 40/8^3 + 174/8^4 + ...;

%e Sum_{n>=0} T(n,2)/8^n = 1/2 = 1/8 + 8/8^2 + 46/8^3 + 256/8^4 + 1286/8^5 + ...;

%e Sum_{n>=0} T(n,3)/8^n = (Pi/2)/3! = 2/8^2 + 24/8^3 + 196/8^4 + 1328/8^5 + ...;

%e Sum_{n>=0} T(n,4)/8^n = 4/4! = 5/8^3 + 80/8^4 + 814/8^5 + 6648/8^6 + ...;

%e Sum_{n>=0} T(n,5)/8^n = (Pi/2)*9/5! = 14/8^4 + 280/8^5 + 3404/8^6 + ...;

%e Sum_{n>=0} T(n,6)/8^n = 64/6! = 42/8^5 + 1008/8^6 + 14252/8^7 + ...;

%e ...

%e Notice that A(x=1/8, y=-1) = 0 is equivalent to

%e Pi^2 = Sum_{n>=1} (-2)^(n+1) * gamma(n/2)^2 / n!.

%o (PARI) /* Prints N Rows of this triangle: */

%o N = 20;

%o {T(n,k) = my(P = -y + x*O(x^(2*N+1)));

%o for(i=1,N+1, P = sqrt(1 - 4*x + 4*x*P +x*O(x^(2*N+1))););

%o Axy = (1 - P)/2^(N+1)/x^(N+1); polcoeff(polcoeff(Axy,n,x),k,y)}

%o for(n=0,N,for(k=0,n+1, print1(T(n,k),", "));print(""))

%Y Cf. A006365, A351509, A351511, A000108.

%K nonn,tabf

%O 0,4

%A _Paul D. Hanna_, Mar 04 2022