login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351435
If n = Product (p_j^k_j) then a(n) = Product ((p_j + 1)^(k_j + 1)).
1
1, 9, 16, 27, 36, 144, 64, 81, 64, 324, 144, 432, 196, 576, 576, 243, 324, 576, 400, 972, 1024, 1296, 576, 1296, 216, 1764, 256, 1728, 900, 5184, 1024, 729, 2304, 2916, 2304, 1728, 1444, 3600, 3136, 2916, 1764, 9216, 1936, 3888, 2304, 5184, 2304, 3888, 512, 1944, 5184, 5292, 2916
OFFSET
1,2
FORMULA
a(n) = A003959(n) * A048250(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = 1/(3 * Product_{p prime} (1 - p/(p^3-1))) = 1 /(3 * A065478) = 0.5787439255... . - Amiram Eldar, Nov 19 2022
Sum_{n>=1} 1/a(n) = zeta(2)/zeta(3) (A306633). - Amiram Eldar, Dec 15 2023
MAPLE
a:= n-> mul((i[1]+1)^(i[2]+1), i=ifactors(n)[2]):
seq(a(n), n=1..53); # Alois P. Heinz, Feb 11 2022
MATHEMATICA
f[p_, e_] := (p + 1)^(e + 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Table[a[n], {n, 1, 53}]
PROG
(PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k, 1]++; f[k, 2]++); factorback(f); \\ Michel Marcus, Feb 11 2022
KEYWORD
nonn,mult,easy
AUTHOR
Ilya Gutkovskiy, Feb 11 2022
STATUS
approved