login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351348
Dirichlet g.f.: Product_{p prime} (1 + 2*p^(-s)) / (1 - p^(-s) - p^(-2*s)).
5
1, 3, 3, 4, 3, 9, 3, 7, 4, 9, 3, 12, 3, 9, 9, 11, 3, 12, 3, 12, 9, 9, 3, 21, 4, 9, 7, 12, 3, 27, 3, 18, 9, 9, 9, 16, 3, 9, 9, 21, 3, 27, 3, 12, 12, 9, 3, 33, 4, 12, 9, 12, 3, 21, 9, 21, 9, 9, 3, 36, 3, 9, 12, 29, 9, 27, 3, 12, 9, 27, 3, 28, 3, 9, 12, 12, 9, 27, 3, 33, 11, 9, 3, 36, 9, 9, 9
OFFSET
1,2
FORMULA
Multiplicative with a(p^e) = Lucas(e+1).
a(n) = Sum_{d|n} A074823(d) * A351219(n/d).
From Vaclav Kotesovec, Feb 12 2022: (Start)
Let f(s) = Product_{p prime} (1 + 1/(p^(2*s) - p^s - 1)) * (1 - 3/p^(2*s) + 2/p^(3*s)), then
Sum_{k=1..n} a(k) ~ n * (f(1)*log(n)^2/2 + ((3*g-1)*f(1) + f'(1))*log(n) + (1 - 3*g + 3*g^2 - 3*sg1)*f(1) + (3*g-1)*f'(1) + f''(1)/2), where
f(1) = Product_{prime p} (p-1)^3 * (p+2) / (p^2 (p^2 - p - 1)) = 0.76679494740111861346654669603448358442373234633770198438779408968851774...,
f'(1) = f(1) * Sum_{p prime} (4*p^2 - 9*p - 4) * log(p) / (p^4 - 4*p^2 + p + 2) = -0.2518173642312369311596467494348076414732211832249275289370643712012051...,
f''(1) = f'(1)^2/f(1) + f(1) * Sum_{p prime} -p*(8*p^5 - 27*p^4 - 16*p^3 + 32*p^2 + 16*p + 14) * log(p)^2 / (p^4 - 4*p^2 + p + 2)^2 = 4.28643633804365513728313780779157573071314496047204449783182235740130206...,
gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). (End)
MATHEMATICA
f[p_, e_] := LucasL[e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 87}]
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + 2*X)/(1 - X - X^2))[n], ", ")) \\ Vaclav Kotesovec, Feb 10 2022
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Feb 08 2022
STATUS
approved