login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326401
Expansion of Sum_{k>=1} k * x^k / (1 + x^k + x^(2*k)).
5
1, 1, 3, 3, 4, 3, 8, 5, 9, 4, 10, 9, 14, 8, 12, 11, 16, 9, 20, 12, 24, 10, 22, 15, 21, 14, 27, 24, 28, 12, 32, 21, 30, 16, 32, 27, 38, 20, 42, 20, 40, 24, 44, 30, 36, 22, 46, 33, 57, 21, 48, 42, 52, 27, 40, 40, 60, 28, 58, 36, 62, 32, 72, 43, 56, 30, 68, 48, 66, 32
OFFSET
1,3
LINKS
Claudia Rella, Resurgence, Stokes constants, and arithmetic functions in topological string theory, arXiv:2212.10606 [hep-th], 2022. See pages 21 - 23.
FORMULA
a(n) = Sum_{d|n, n/d==1 (mod 3)} d - Sum_{d|n, n/d==2 (mod 3)} d.
a(n) = A326399(n) - A326400(n).
Multiplicative with a(3^e) = 3^e, a(p^e) = (p^(e+1) - 1)/(p - 1) if p == 1 (mod 3), and (p^(e+1) + (-1)^e)/(p + 1) if p == 2 (mod 3). - Amiram Eldar, Oct 25 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{primes p == 1 (mod 3)} 1/(1 - 1/p^2) * Product_{primes p == 2 (mod 3)} 1/(1 + 1/p^2) = (1/2) * A175646 * (2*Pi^2/27)/A340577 = 0.3906512064... . - Amiram Eldar, Nov 06 2022
MATHEMATICA
nmax = 70; CoefficientList[Series[Sum[k x^k/(1 + x^k + x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[DivisorSum[n, # &, MemberQ[{1}, Mod[n/#, 3]] &] - DivisorSum[n, # &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 70}]
f[p_, e_] := Which[p == 3, p^e, Mod[p, 3] == 1, (p^(e + 1) - 1)/(p - 1), Mod[p, 3] == 2, (p^(e + 1) + (-1)^e)/(p + 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 3, 3^f[i, 2], if(f[i, 1]%3 == 1, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1), (f[i, 1]^(f[i, 2]+1) + (-1)^f[i, 2])/(f[i, 1] + 1)))); } \\ Amiram Eldar, Nov 06 2022
KEYWORD
nonn,mult,easy
AUTHOR
Ilya Gutkovskiy, Sep 11 2019
STATUS
approved