Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Dec 24 2022 19:03:44
%S 1,1,3,3,4,3,8,5,9,4,10,9,14,8,12,11,16,9,20,12,24,10,22,15,21,14,27,
%T 24,28,12,32,21,30,16,32,27,38,20,42,20,40,24,44,30,36,22,46,33,57,21,
%U 48,42,52,27,40,40,60,28,58,36,62,32,72,43,56,30,68,48,66,32
%N Expansion of Sum_{k>=1} k * x^k / (1 + x^k + x^(2*k)).
%H Amiram Eldar, <a href="/A326401/b326401.txt">Table of n, a(n) for n = 1..10000</a>
%H Claudia Rella, <a href="https://arxiv.org/abs/2212.10606">Resurgence, Stokes constants, and arithmetic functions in topological string theory</a>, arXiv:2212.10606 [hep-th], 2022. See pages 21 - 23.
%F a(n) = Sum_{d|n, n/d==1 (mod 3)} d - Sum_{d|n, n/d==2 (mod 3)} d.
%F a(n) = A326399(n) - A326400(n).
%F Multiplicative with a(3^e) = 3^e, a(p^e) = (p^(e+1) - 1)/(p - 1) if p == 1 (mod 3), and (p^(e+1) + (-1)^e)/(p + 1) if p == 2 (mod 3). - _Amiram Eldar_, Oct 25 2020
%F Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{primes p == 1 (mod 3)} 1/(1 - 1/p^2) * Product_{primes p == 2 (mod 3)} 1/(1 + 1/p^2) = (1/2) * A175646 * (2*Pi^2/27)/A340577 = 0.3906512064... . - _Amiram Eldar_, Nov 06 2022
%t nmax = 70; CoefficientList[Series[Sum[k x^k/(1 + x^k + x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%t Table[DivisorSum[n, # &, MemberQ[{1}, Mod[n/#, 3]] &] - DivisorSum[n, # &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 70}]
%t f[p_, e_] := Which[p == 3, p^e, Mod[p, 3] == 1, (p^(e + 1) - 1)/(p - 1), Mod[p, 3] == 2, (p^(e + 1) + (-1)^e)/(p + 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Oct 25 2020 *)
%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 3, 3^f[i,2], if(f[i,1]%3 == 1, (f[i,1]^(f[i,2]+1) - 1)/(f[i,1] - 1), (f[i,1]^(f[i,2]+1) + (-1)^f[i,2])/(f[i,1] + 1))));} \\ _Amiram Eldar_, Nov 06 2022
%Y Cf. A000593, A002324, A050469, A078708, A326399, A326400.
%Y Cf. A175646, A340577.
%K nonn,mult,easy
%O 1,3
%A _Ilya Gutkovskiy_, Sep 11 2019