login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351347
Dirichlet g.f.: Product_{p prime} 1 / (1 - p^(-s) - 2*p^(-2*s)).
6
1, 1, 1, 3, 1, 1, 1, 5, 3, 1, 1, 3, 1, 1, 1, 11, 1, 3, 1, 3, 1, 1, 1, 5, 3, 1, 5, 3, 1, 1, 1, 21, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 11, 3, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 3, 1, 1, 3, 43, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 3, 3, 1, 1, 1, 11, 11, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 21, 1, 3, 3, 9
OFFSET
1,4
FORMULA
Multiplicative with a(p^e) = Jacobsthal(e+1).
From Vaclav Kotesovec, Feb 11 2022: (Start)
Let f(s) = Product_{prime p>2} (1 - 3/p^(2*s) + 2/p^(3*s))/(1 - 4/p^(2*s)), then
Sum_{k=1..n} a(k) ~ n*((2 * Pi^2 * log(n) + Pi^2 * (5*log(2) + 2*gamma - 2) + 24*zeta'(2))*f(1) + 2*Pi^2 * f'(1)) / (48*log(2)), where
f(1) = Product_{prime p > 2} (1 + 1/(p*(p-2))) = A167864 = 1.5147801281374912577909192556494748924152701582862143953574842714849322098...,
f'(1) = -f(1) * Sum_{primes p > 2} 2*log(p) / (2 - 3*p + p^2) = -2*f(1)*A347195 = -2.603580548675394425068281893203286277011306183054394825715911358402698051... and gamma is the Euler-Mascheroni constant A001620. (End)
MATHEMATICA
f[p_, e_] := (2^(e + 1) + (-1)^e)/3; a[n_] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 100}]
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X - 2*X^2))[n], ", ")) \\ Vaclav Kotesovec, Feb 10 2022
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Feb 08 2022
STATUS
approved