Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Feb 11 2022 10:42:22
%S 1,1,1,3,1,1,1,5,3,1,1,3,1,1,1,11,1,3,1,3,1,1,1,5,3,1,5,3,1,1,1,21,1,
%T 1,1,9,1,1,1,5,1,1,1,3,3,1,1,11,3,3,1,3,1,5,1,5,1,1,1,3,1,1,3,43,1,1,
%U 1,3,1,1,1,15,1,1,3,3,1,1,1,11,11,1,1,3,1,1,1,5,1,3,1,3,1,1,1,21,1,3,3,9
%N Dirichlet g.f.: Product_{p prime} 1 / (1 - p^(-s) - 2*p^(-2*s)).
%H Amiram Eldar, <a href="/A351347/b351347.txt">Table of n, a(n) for n = 1..10000</a>
%H Vaclav Kotesovec, <a href="/A351347/a351347.jpg">Graph - the asymptotic ratio (2*10^8 terms)</a>
%F Multiplicative with a(p^e) = Jacobsthal(e+1).
%F From _Vaclav Kotesovec_, Feb 11 2022: (Start)
%F Let f(s) = Product_{prime p>2} (1 - 3/p^(2*s) + 2/p^(3*s))/(1 - 4/p^(2*s)), then
%F Sum_{k=1..n} a(k) ~ n*((2 * Pi^2 * log(n) + Pi^2 * (5*log(2) + 2*gamma - 2) + 24*zeta'(2))*f(1) + 2*Pi^2 * f'(1)) / (48*log(2)), where
%F f(1) = Product_{prime p > 2} (1 + 1/(p*(p-2))) = A167864 = 1.5147801281374912577909192556494748924152701582862143953574842714849322098...,
%F f'(1) = -f(1) * Sum_{primes p > 2} 2*log(p) / (2 - 3*p + p^2) = -2*f(1)*A347195 = -2.603580548675394425068281893203286277011306183054394825715911358402698051... and gamma is the Euler-Mascheroni constant A001620. (End)
%t f[p_, e_] := (2^(e + 1) + (-1)^e)/3; a[n_] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 100}]
%o (PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X - 2*X^2))[n], ", ")) \\ _Vaclav Kotesovec_, Feb 10 2022
%Y Cf. A001045, A061142, A351219, A351346, A351348.
%K nonn,mult
%O 1,4
%A _Ilya Gutkovskiy_, Feb 08 2022