login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246011
a(n) = Product_{i in row n of A245562} Lucas(i+1), where Lucas = A000204.
1
1, 3, 3, 4, 3, 9, 4, 7, 3, 9, 9, 12, 4, 12, 7, 11, 3, 9, 9, 12, 9, 27, 12, 21, 4, 12, 12, 16, 7, 21, 11, 18, 3, 9, 9, 12, 9, 27, 12, 21, 9, 27, 27, 36, 12, 36, 21, 33, 4, 12, 12, 16, 12, 36, 16, 28, 7, 21, 21, 28, 11, 33, 18, 29, 3, 9, 9, 12, 9, 27, 12, 21, 9, 27, 27, 36, 12, 36, 21, 33, 9, 27, 27, 36, 27
OFFSET
0,2
COMMENTS
This is the Run Length Transform of S(n) = Lucas(n+1) = 1,3,4,7,11,... (cf. A000204).
The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g. 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product).
LINKS
EXAMPLE
From Omar E. Pol, Feb 15 2015: (Start)
Written as an irregular triangle in which row lengths are the terms of A011782:
1;
3;
3,4;
3,9,4,7;
3,9,9,12,4,12,7,11;
3,9,9,12,9,27,12,21,4,12,12,16,7,21,11,18;
3,9,9,12,9,27,12,21,9,27,27,36,12,36,21,33,4,12,12,16,12,36,16,28,7,21,21,28,11,33,18,29;
...
Right border gives the Lucas numbers (beginning with 1). This is simply a restatement of the theorem that this sequence is the Run Length Transform of A000204.
(End)
MAPLE
A000204 := proc(n) option remember; if n <=2 then 2*n-1; else A000204(n-1)+A000204(n-2); fi; end;
ans:=[];
for n from 0 to 100 do lis:=[]; t1:=convert(n, base, 2); L1:=nops(t1);
out1:=1; c:=0;
for i from 1 to L1 do
if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
elif out1 = 0 and t1[i] = 1 then c:=c+1;
elif out1 = 1 and t1[i] = 0 then c:=c;
elif out1 = 0 and t1[i] = 0 then lis:=[c, op(lis)]; out1:=1; c:=0;
fi;
if i = L1 and c>0 then lis:=[c, op(lis)]; fi;
od:
a:=mul(A000204(i+1), i in lis);
ans:=[op(ans), a];
od:
ans;
PROG
(Python)
from math import prod
from re import split
from sympy import lucas
def run_length_transform(f): return lambda n: prod(f(len(d)) for d in split('0+', bin(n)[2:]) if d != '') if n > 0 else 1
def A246011(n): return run_length_transform(lambda n:lucas(n+1))(n) # Chai Wah Wu, Oct 24 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Aug 10 2014; revised Sep 05 2014
STATUS
approved