The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A351281 a(n) = Sum_{k=0..n} k! * k^k * Stirling2(n,k). 2
 1, 1, 9, 187, 7173, 440611, 39631509, 4910795107, 802015652853, 166948755155971, 43146953460348309, 13555255072473665827, 5087595330217093070133, 2248298922174973220446531, 1155512971750307157457879509, 683392198848998191062416885347 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f.: Sum_{k>=0} (k * (exp(x) - 1))^k. a(n) ~ exp(exp(-1)/2) * n! * n^n. - Vaclav Kotesovec, Feb 06 2022 MATHEMATICA a[0] = 1; a[n_] := Sum[k! * k^k * StirlingS2[n, k], {k, 1, n}]; Array[a, 16, 0] (* Amiram Eldar, Feb 06 2022 *) PROG (PARI) a(n) = sum(k=0, n, k!*k^k*stirling(n, k, 2)); (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*(exp(x)-1))^k))) CROSSREFS Cf. A000670, A122399, A229234, A282190, A350722, A351280. Sequence in context: A196297 A274781 A293848 * A266496 A078101 A133556 Adjacent sequences:  A351278 A351279 A351280 * A351282 A351283 A351284 KEYWORD nonn AUTHOR Seiichi Manyama, Feb 06 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 19 18:30 EDT 2022. Contains 356229 sequences. (Running on oeis4.)