login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078101
1/6 of the number of ways of 3-coloring an (n-1) X n grid.
2
1, 9, 187, 9075, 1034073, 277458045, 175605187731, 262459366542859, 927063711694234937, 7743238400519517700687, 152996488947929392223648350, 7153582340115101979222478030231, 791692010951982239786844983500390201, 207426783553049237691620430245372971070275
OFFSET
2,2
COMMENTS
Also the number of 3-colorings of the P_{n-1} X P_n grid graph up to permutation of the colors. - Andrew Howroyd, Jun 26 2017
REFERENCES
Michael S. Paterson (Warwick), personal communication.
LINKS
FORMULA
See A078099 for formula.
a(n) = A207997(n-1, n) = A078099(n-1, n)/2. - Andrew Howroyd, Jun 26 2017
MATHEMATICA
M[1] = {{1}};
M[m_] := M[m] = {{M[m - 1], Transpose[M[m - 1]]}, {Array[0 &, {2^(m - 2), 2^(m - 2)}], M[m - 1]}} // ArrayFlatten; W[m_] := M[m] + Transpose[M[m]];
T[m_, 1] := 2^(m - 1);
T[1, n_] := 2^(n - 1);
T[m_, n_] := MatrixPower[ W[m], n - 1] // Flatten // Total;
a[n_] := T[n - 1, n]/2;
Table[Print[n]; a[n], {n, 2, 15}] (* Jean-François Alcover, Sep 16 2019 *)
CROSSREFS
A diagonal of A078099 and A207997.
Sequence in context: A293848 A351281 A266496 * A133556 A351333 A196215
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 05 2002
EXTENSIONS
a(7)-a(13) from Alois P. Heinz, Mar 25 2009
Name clarified and a(14)-a(15) from Andrew Howroyd, Jun 26 2017
STATUS
approved