login
A351333
a(n) = Sum_{k=0..n} k! * (-k)^k * Stirling1(n,k).
2
1, -1, 9, -188, 7210, -442534, 39778322, -4926514200, 804271290024, -167367096770256, 43244394345493968, -13583108127289832592, 5097183064576208028096, -2252211248747050526401296, 1157380447302779717382178416, -684423139836843936246492092928
OFFSET
0,3
FORMULA
E.g.f.: Sum_{k>=0} (-k * log(1+x))^k.
PROG
(PARI) a(n) = sum(k=0, n, k!*(-k)^k*stirling(n, k, 1));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k*log(1+x))^k)))
CROSSREFS
Sequence in context: A266496 A078101 A133556 * A196215 A196682 A124008
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 07 2022
STATUS
approved