%I #7 Feb 07 2022 21:44:54
%S 1,-1,9,-188,7210,-442534,39778322,-4926514200,804271290024,
%T -167367096770256,43244394345493968,-13583108127289832592,
%U 5097183064576208028096,-2252211248747050526401296,1157380447302779717382178416,-684423139836843936246492092928
%N a(n) = Sum_{k=0..n} k! * (-k)^k * Stirling1(n,k).
%F E.g.f.: Sum_{k>=0} (-k * log(1+x))^k.
%o (PARI) a(n) = sum(k=0, n, k!*(-k)^k*stirling(n, k, 1));
%o (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k*log(1+x))^k)))
%Y Cf. A351280, A351334.
%K sign
%O 0,3
%A _Seiichi Manyama_, Feb 07 2022