login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350722
a(n) = Sum_{k=0..n} k! * k^(k+n) * Stirling2(n,k).
4
1, 1, 33, 4567, 1652493, 1235777551, 1656820330173, 3619858882041487, 12034209740498292093, 57813156798714532953391, 385490564193781368103929213, 3454086424032897924417605526607, 40500898779980258599522326286912893
OFFSET
0,3
FORMULA
E.g.f.: Sum_{k>=0} (k * (exp(k*x) - 1))^k.
a(n) ~ exp(exp(-2)/2) * n! * n^(2*n). - Vaclav Kotesovec, Feb 04 2022
MATHEMATICA
a[0] = 1; a[n_] := Sum[k! * k^(k+n) * StirlingS2[n, k], {k, 1, n}]; Array[a, 13, 0] (* Amiram Eldar, Feb 03 2022 *)
PROG
(PARI) a(n) = sum(k=0, n, k!*k^(k+n)*stirling(n, k, 2));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*(exp(k*x)-1))^k)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 03 2022
STATUS
approved