login
A351036
Lexicographically earliest infinite sequence such that a(i) = a(j) => A000593(i) = A000593(j) and A336158(i) = A336158(j), for all i, j >= 1.
4
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 17, 5, 18, 10, 19, 3, 20, 11, 21, 6, 22, 12, 23, 2, 24, 13, 25, 7, 26, 14, 25, 4, 27, 15, 28, 8, 29, 16, 30, 1, 31, 17, 32, 9, 33, 17, 34, 5, 35, 18, 36, 10, 33, 19, 37, 3, 38, 20, 39, 11, 40, 21, 41, 6, 42
OFFSET
1,3
COMMENTS
Restricted growth sequence transform of the ordered pair [A000593(n), A336158(n)], where A000593(n) is the sum of odd divisors of n, and A336158(n) is the least representative of the prime signature of the odd part of n.
For all i, j:
A003602(i) = A003602(j) => A351040(i) = A351040(j) => a(i) = a(j),
a(i) = a(j) => A113415(i) = A113415(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A000265(n) = (n>>valuation(n, 2));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A000593(n) = sigma(A000265(n));
Aux351036(n) = [A000593(n), A336158(n)];
v351036 = rgs_transform(vector(up_to, n, Aux351036(n)));
A351036(n) = v351036[n];
CROSSREFS
Cf. also A351037.
Differs from A347374 for the first time at n=103, where a(103) = 48, while A347374(103) = 30.
Differs from A351035 for the first time at n=175, where a(175) = 80, while A351035(175) = 78.
Differs from A351040 for the first time at n=637, where a(637) = 261, while A351040(637) = 272.
Sequence in context: A336935 A336162 A351035 * A351040 A347374 A336934
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Jan 30 2022
STATUS
approved