Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 31 2022 18:10:41
%S 1,1,2,1,3,2,4,1,5,3,6,2,7,4,8,1,9,5,10,3,11,6,12,2,13,7,14,4,15,8,16,
%T 1,17,9,17,5,18,10,19,3,20,11,21,6,22,12,23,2,24,13,25,7,26,14,25,4,
%U 27,15,28,8,29,16,30,1,31,17,32,9,33,17,34,5,35,18,36,10,33,19,37,3,38,20,39,11,40,21,41,6,42
%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A000593(i) = A000593(j) and A336158(i) = A336158(j), for all i, j >= 1.
%C Restricted growth sequence transform of the ordered pair [A000593(n), A336158(n)], where A000593(n) is the sum of odd divisors of n, and A336158(n) is the least representative of the prime signature of the odd part of n.
%C For all i, j:
%C A003602(i) = A003602(j) => A351040(i) = A351040(j) => a(i) = a(j),
%C a(i) = a(j) => A113415(i) = A113415(j).
%H Antti Karttunen, <a href="/A351036/b351036.txt">Table of n, a(n) for n = 1..65537</a>
%o (PARI)
%o up_to = 65537;
%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A000265(n) = (n>>valuation(n,2));
%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
%o A336158(n) = A046523(A000265(n));
%o A000593(n) = sigma(A000265(n));
%o Aux351036(n) = [A000593(n), A336158(n)];
%o v351036 = rgs_transform(vector(up_to, n, Aux351036(n)));
%o A351036(n) = v351036[n];
%Y Cf. A000265, A000593, A003602, A046523, A113415, A336158.
%Y Cf. also A351037.
%Y Differs from A347374 for the first time at n=103, where a(103) = 48, while A347374(103) = 30.
%Y Differs from A351035 for the first time at n=175, where a(175) = 80, while A351035(175) = 78.
%Y Differs from A351040 for the first time at n=637, where a(637) = 261, while A351040(637) = 272.
%K nonn,easy
%O 1,3
%A _Antti Karttunen_, Jan 30 2022