login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350702
Primes p such that 14*p + 1 divides 2^p - 1.
3
929, 1433, 2393, 2609, 2657, 4373, 4793, 6029, 7529, 10133, 10433, 10949, 10973, 13049, 13109, 16829, 18869, 20873, 22349, 23417, 24137, 26717, 27737, 27893, 28433, 28517, 30977, 33809, 33857, 37217, 38189, 38237, 39209, 39749, 41453, 41813, 42569, 43313, 43613
OFFSET
1,1
COMMENTS
Known divisors of Mersenne(p) (2^p-1 or Mp for short) are of the form 2*k*p+1. See crossrefs for other k's. If k == 2 (mod 4), there are no such divisors in general. Here k is 14/2 = 7.
FORMULA
{p = A000040(i): 14*p+1 | A001348(i)}.
EXAMPLE
See LINKS for example of a(13).
MATHEMATICA
Select[Range[45000], PrimeQ[#] && PowerMod[2, #, 14*# + 1] == 1 &] (* Amiram Eldar, Jan 27 2022 *)
PROG
(PARI) forprime(p=1, 1e6, if (Mod(2, p*14+1)^p==1, print1(p, ", ")))
(Python) from sympy import sieve
print([p for p in sieve[1:1000000] if pow(2, p, 14*p+1) == 1])
CROSSREFS
Cf. A002515 (k = 1), A188130 (k = 3), A122095 (k = 4), A188133 (k = 5).
Sequence in context: A237229 A219526 A249535 * A340957 A289727 A290967
KEYWORD
nonn
AUTHOR
Karl-Heinz Hofmann, Jan 27 2022
STATUS
approved