OFFSET
1,1
COMMENTS
For these terms m, there are precisely 2 groups of order m, so this is a subsequence of A054395.
The 2 groups are abelian; they are C_{p^2*q} and (C_p X C_p) X C_q, where C means cyclic groups of the stated order and the symbol X means direct product.
REFERENCES
Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.
EXAMPLE
99 = 3^2 * 11, 3 and 11 are odd and 3 does not divide 11-1 = 10, hence 99 is a term.
175 = 5^2 * 7, 5 and 7 are odd and 5 does not divide 7-1 = 6, hence 115 is another term.
MATHEMATICA
q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {2, 1} && ! Divisible[p[[2]] - 1, p[[1]]]]; Select[Range[2000], q] (* Amiram Eldar, Dec 25 2021 *)
PROG
(Python)
from sympy import integer_nthroot, primerange
def aupto(limit):
aset, maxp = set(), integer_nthroot(limit, 3)[0]
for p in primerange(3, maxp+1):
pp = p*p
for q in primerange(p+1, limit//pp+1):
if (q-1)%p != 0:
aset.add(pp*q)
return sorted(aset)
print(aupto(2060)) # Michael S. Branicky, Dec 25 2021
(PARI) isok(m) = my(f=factor(m)); if (f[, 2] == [2, 1]~, my(p=f[1, 1], q=f[2, 1]); ((q-1) % p)); \\ Michel Marcus, Dec 25 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernard Schott, Dec 25 2021
EXTENSIONS
More terms from Michael S. Branicky, Dec 25 2021
STATUS
approved