login
A350173
Write the square of 1st prime, then the 2nd prime, then the square of 3rd prime, alternately squaring or not.
1
4, 3, 25, 7, 121, 13, 289, 19, 529, 29, 961, 37, 1681, 43, 2209, 53, 3481, 61, 4489, 71, 5329, 79, 6889, 89, 9409, 101, 10609, 107, 11881, 113, 16129, 131, 18769, 139, 22201, 151, 24649, 163, 27889, 173, 32041, 181, 36481, 193, 38809, 199, 44521, 223, 51529, 229, 54289, 239, 58081, 251, 66049, 263, 72361, 271, 76729, 281, 80089, 293
OFFSET
1,1
REFERENCES
J.-P. Delahaye, Des suites fractales d’entiers, Pour la Science, No. 531 January 2022. Sequence f) p. 82.
MAPLE
[seq(ithprime(n)^(1+(n mod 2)), n=1..80)]; # N. J. A. Sloane, Dec 18 2021
MATHEMATICA
{#[[1]]^2, #[[2]]}&/@Partition[Prime[Range[70]], 2]//Flatten (* Harvey P. Dale, Jul 30 2024 *)
PROG
(Python)
from sympy import prime
def A350173(n): return prime(n)**(n%2+1) # Chai Wah Wu, Dec 19 2021
CROSSREFS
Sequence in context: A224515 A286328 A189742 * A243237 A072044 A376607
KEYWORD
nonn
AUTHOR
Michel Marcus, Dec 18 2021
STATUS
approved