login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243237
Number of isoscent sequences of length n with maximal number of ascents.
2
1, 1, 1, 4, 3, 25, 17, 2, 172, 53, 7, 1422, 436, 72, 5, 7894, 1854, 271, 19, 86372, 19919, 3179, 312, 14, 527951, 102503, 14324, 1287, 56, 7237537, 1373018, 198783, 20572, 1350, 42, 48862041, 8055893, 1032239, 96532, 5866, 174, 801902467, 129068117, 16767855
OFFSET
0,4
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..100
FORMULA
a(n) = A242351(n,n+3-ceiling(2*sqrt(n+2))).
MAPLE
b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
`if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
end:
a:= n-> (p-> coeff(p, x, degree(p)))(b(n-1, 0$2)):
seq(a(n), n=0..50);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[
If[j > i, x, 1]*b[n - 1, j, t + If[j == i, 1, 0]], {j, 0, t + 1}]]];
a[n_] := With[{p = b[n - 1, 0, 0]}, Coefficient[p, x, Exponent[p, x]]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Aug 27 2021, after Maple code *)
CROSSREFS
Sequence in context: A286328 A189742 A350173 * A072044 A376607 A286795
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 01 2014
STATUS
approved