login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349770
a(n) = Sum_{d|n} usigma(d) * usigma(n/d).
0
1, 6, 8, 19, 12, 48, 16, 48, 36, 72, 24, 152, 28, 96, 96, 113, 36, 216, 40, 228, 128, 144, 48, 384, 88, 168, 136, 304, 60, 576, 64, 258, 192, 216, 192, 684, 76, 240, 224, 576, 84, 768, 88, 456, 432, 288, 96, 904, 164, 528, 288, 532, 108, 816, 288, 768, 320, 360, 120, 1824
OFFSET
1,2
COMMENTS
Dirichlet convolution of A034448 with itself.
FORMULA
Dirichlet g.f.: ( zeta(s) * zeta(s-1) / zeta(2*s-1) )^2.
Multiplicative with a(p^e) = e * (p^e + 1) + (p+1) * (p^e - 1)/(p-1). - Amiram Eldar, Nov 29 2021
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / zeta(3)^2 * (Pi^2 * log(n)/72 + gamma * Pi^2/36 - Pi^2/144 + zeta'(2)/6 - Pi^2 * zeta'(3)/(18*zeta(3))), where zeta(3) = A002117, zeta'(2) = -A073002, zeta'(3) = -A244115 and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 05 2021
MATHEMATICA
usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; a[n_] := Sum[usigma[d] usigma[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 60}]
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Nov 29 2021
STATUS
approved