OFFSET
1,1
COMMENTS
Generalization of the 7th problem proposed during the 3rd Canadian Mathematical Olympiad in 1971, when this problem asked the question for 5-digit numbers (see Doob reference and link IMO Compendium).
REFERENCES
Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 7, 1971, page 27, 1993.
LINKS
The IMO Compendium, Problem 7, 3rd Canadian Mathematical Olympiad 1971.
EXAMPLE
105 / 15 = 7 hence 105 is a term.
290 / 20 = 29/2 hence 290 is not a term.
MATHEMATICA
Select[Range[100, 500], OddQ[(nd = IntegerLength[#])] && Divisible[#, FromDigits[Delete[IntegerDigits[#], (nd + 1)/2]]] &] (* Amiram Eldar, Nov 29 2021 *)
PROG
(Python)
def auptod(maxdigits):
alst = []
for d in range(3, maxdigits+1, 2):
mid = d//2
for k in range(10**(d-1), 10**d):
sk = str(k)
m = int(sk[:mid] + sk[(mid+1):])
if k%m == 0: alst.append(k)
return alst
print(auptod(5)) # Michael S. Branicky, Nov 29 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Nov 29 2021
STATUS
approved