login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349683
E.g.f. satisfies: log(A(x)) = exp(x*A(x)^3) - 1.
6
1, 1, 8, 131, 3303, 113137, 4909829, 258275887, 15974450676, 1136164798581, 91366516437475, 8197719659916195, 811910298234609913, 87984131560596043801, 10355660409438349522396, 1315550191540192189444535, 179413108433279983993509731
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} (3*n+1)^(k-1) * Stirling2(n,k).
a(n) ~ s * n^(n-1) / (3 * sqrt(1 + r*s^3) * exp(n) * r^n), where r = LambertW(1/3)/exp(1/LambertW(1/3) - 3) = 0.106691814639676411952403096776061... and s = exp(1/(3*LambertW(1/3)) - 1) = 1.341591995635184131204677967393502... are roots of the system of equations exp(r*s^3) = 1 + log(s), 3*r*s^3*exp(r*s^3) = 1. - Vaclav Kotesovec, Nov 26 2021
MATHEMATICA
nterms=20; Table[Sum[(3n+1)^(k-1)*StirlingS2[n, k], {k, 0, n}], {n, 0, nterms-1}] (* Paolo Xausa, Nov 25 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, (3*n+1)^(k-1)*stirling(n, k, 2));
CROSSREFS
Sequence in context: A187609 A365058 A241076 * A222429 A365340 A237026
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 25 2021
STATUS
approved