login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349680
a(n) = Sum_{k=1..n} (n-k)^c(n/k), where c(n) = 1 - ceiling(n) + floor(n).
1
0, 1, 3, 6, 7, 14, 11, 21, 20, 28, 19, 50, 23, 42, 47, 60, 31, 81, 35, 92, 69, 70, 43, 148, 66, 84, 91, 134, 55, 190, 59, 155, 113, 112, 123, 260, 71, 126, 135, 262, 79, 274, 83, 218, 231, 154, 91, 394, 136, 251, 179, 260, 103, 358, 199, 376, 201, 196, 115, 600, 119, 210, 331
OFFSET
1,3
COMMENTS
For all k from 1 to n, add (n-k) if k|n, otherwise add 1 (see example).
LINKS
FORMULA
a(n) = n + (n-1)*A000005(n) - A000203(n). - Chai Wah Wu, Nov 25 2021
a(p) = 2p-3 for primes p. - Wesley Ivan Hurt, Nov 28 2021
EXAMPLE
a(8) = 21, since for k = 1..8, we have: (8-1) + (8-2) + 1 + (8-4) + 1 + 1 + 1 + (8-8) = 21.
MATHEMATICA
Table[Sum[(n - k)^(1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 100}]
PROG
(PARI) a(n) = sum(k=1, n, if (n % k, 1, n-k)); \\ Michel Marcus, Nov 25 2021
(Python)
from sympy import divisor_sigma
def A349680(n): return n+(n-1)*divisor_sigma(n, 0)-divisor_sigma(n, 1) # Chai Wah Wu, Nov 25 2021
CROSSREFS
Cf. A000005 (tau), A000203 (sigma).
Sequence in context: A245394 A137473 A303604 * A255683 A127307 A099403
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Nov 24 2021
STATUS
approved