login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A349598 E.g.f. satisfies: log(A(x)) = exp(x*A(x)^2) - 1. 3
1, 1, 6, 71, 1279, 31142, 958127, 35674921, 1560207964, 78410153193, 4453247964775, 282086867840252, 19718661737739301, 1507855981764016549, 125211854842018500134, 11220898483255456505555, 1079389691811367897870339, 110936313685240067472613726 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..343

FORMULA

a(n) = Sum_{k=0..n} (2*n+1)^(k-1) * Stirling2(n,k).

a(n) ~ s * n^(n-1) / (2 * sqrt(1 + r*s^2) * exp(n) * r^n), where r = 0.1513832219344136560178112221696108323993292386502... and s = 1.52429184135463908701026733917578550814344591549... are roots of the system of equations (1 + log(s))*2*r*s^2 = 1, 2*r*s^2*exp(r*s^2) = 1. - Vaclav Kotesovec, Nov 25 2021

Equivalently, a(n) ~ n^(n-1) / (2*sqrt(1 + LambertW(1/2)) * LambertW(1/2)^n * exp(3*n + 1 - (n + 1/2)/LambertW(1/2))). - Vaclav Kotesovec, Nov 26 2021

MATHEMATICA

a[n_] := Sum[(2*n + 1)^(k - 1)*StirlingS2[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 23 2021 *)

PROG

(PARI) a(n) = sum(k=0, n, (2*n+1)^(k-1)*stirling(n, k, 2));

CROSSREFS

Cf. A001761, A001763, A349599.

Cf. A349524, A349601.

Sequence in context: A028844 A274644 A349684 * A145089 A218676 A127135

Adjacent sequences:  A349595 A349596 A349597 * A349599 A349600 A349601

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Nov 22 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 10:20 EDT 2022. Contains 356114 sequences. (Running on oeis4.)