login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349430
Number of set partitions of [5n] into 5-element subsets {i, i+k, i+2k, i+3k, i+4k} with 1<=k<=n.
2
1, 1, 2, 4, 10, 20, 58, 124, 344, 811, 2071, 4973, 15454, 36031, 96212, 237563, 668695, 1626751, 4674373, 11470722, 31460456, 81705943, 224598113
OFFSET
0,3
EXAMPLE
a(4) = 10: {{1,2,3,4,5}, {6,7,8,9,10}, {11,12,13,14,15}, {16,17,18,19,20}},
{{1,3,5,7,9}, {2,4,6,8,10}, {11,12,13,14,15}, {16,17,18,19,20}},
{{1,2,3,4,5}, {6,8,10,12,14}, {7,9,11,13,15}, {16,17,18,19,20}},
{{1,4,7,10,13}, {2,5,8,11,14}, {3,6,9,12,15}, {16,17,18,19,20}},
{{1,2,3,4,5}, {6,7,8,9,10}, {11,13,15,17,19}, {12,14,16,18,20}},
{{1,3,5,7,9}, {2,4,6,8,10}, {11,13,15,17,19}, {12,14,16,18,20}},
{{1,5,9,13,17}, {2,4,6,8,10}, {3,7,11,15,19}, {12,14,16,18,20}},
{{1,2,3,4,5}, {6,9,12,15,18}, {7,10,13,16,19}, {8,11,14,17,20}},
{{1,3,5,7,9}, {2,6,10,14,18}, {4,8,12,16,20}, {11,13,15,17,19}},
{{1,5,9,13,17}, {2,6,10,14,18}, {3,7,11,15,19}, {4,8,12,16,20}}.
MAPLE
b:= proc(s, t) option remember; `if`(s={}, 1, (m-> add(
`if`({seq(m-h*j, h=1..4)} minus s={}, b(s minus {seq(m-h*j,
h=0..4)}, t), 0), j=1..min(t, iquo(m-1, 4))))(max(s)))
end:
a:= proc(n) option remember; forget(b): b({$1..5*n}, n) end:
seq(a(n), n=0..10);
MATHEMATICA
b[s_, t_] := b[s, t] = If[s == {}, 1, Function[m, Sum[If[Union[Table[m - h*j, {h, 1, 4}] ~Complement~ s] == {}, b[s ~Complement~ Union[Table[m - h*j, {h, 0, 4}]], t], 0], {j, 1, Min[t, Quotient[m-1, 4]]}]][Max[s]]];
a[n_] := a[n] = b[Range[5n], n];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 15}] (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A000567 (number of subsets), A008587 (number of elements), A104431 (when k is unbounded), A337520.
Main diagonal of A360491.
Sequence in context: A104433 A104432 A355747 * A129211 A175204 A215533
KEYWORD
nonn,more
AUTHOR
Alois P. Heinz, Nov 17 2021
EXTENSIONS
a(22) from Alois P. Heinz, Nov 23 2022
STATUS
approved