login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349427
a(n) = ((n+1)^2 - 2) * binomial(2*n-2,n-1) / 2.
1
0, 1, 7, 42, 230, 1190, 5922, 28644, 135564, 630630, 2892890, 13117676, 58903572, 262303132, 1159666900, 5094808200, 22259364120, 96773942790, 418882316490, 1805951924700, 7758285404100, 33221013445620, 141830949914940, 603876402587640, 2564713671647400
OFFSET
0,3
FORMULA
G.f.: x * (1 - x) * (1 - 2*x) / (1 - 4*x)^(5/2).
E.g.f.: x * exp(2*x) * (2 * (1 + x) * BesselI(0,2*x) + (1 + 2*x) * BesselI(1,2*x)) / 2.
a(n) = n * ((n+1)^2 - 2) * Catalan(n-1) / 2.
a(n) = Sum_{k=0..n} binomial(n,k)^2 * A000217(k).
a(n) ~ 2^(2*n-3) * n^(3/2) / sqrt(Pi).
D-finite with recurrence (n-1)*(n^2-2)*a(n) -2*(2*n-3)*(n^2+2*n-1)*a(n-1)=0. - R. J. Mathar, Mar 06 2022
MATHEMATICA
Table[((n + 1)^2 - 2) Binomial[2 n - 2, n - 1]/2, {n, 0, 24}]
nmax = 24; CoefficientList[Series[x (1 - x) (1 - 2 x)/(1 - 4 x)^(5/2), {x, 0, nmax}], x]
PROG
(PARI) a(n) = ((n+1)^2 - 2) * binomial(2*n-2, n-1) / 2 \\ Andrew Howroyd, Nov 20 2021
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Nov 17 2021
STATUS
approved