Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Nov 23 2023 20:52:13
%S 1,1,2,4,10,20,58,124,344,811,2071,4973,15454,36031,96212,237563,
%T 668695,1626751,4674373,11470722,31460456,81705943,224598113
%N Number of set partitions of [5n] into 5-element subsets {i, i+k, i+2k, i+3k, i+4k} with 1<=k<=n.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%e a(4) = 10: {{1,2,3,4,5}, {6,7,8,9,10}, {11,12,13,14,15}, {16,17,18,19,20}},
%e {{1,3,5,7,9}, {2,4,6,8,10}, {11,12,13,14,15}, {16,17,18,19,20}},
%e {{1,2,3,4,5}, {6,8,10,12,14}, {7,9,11,13,15}, {16,17,18,19,20}},
%e {{1,4,7,10,13}, {2,5,8,11,14}, {3,6,9,12,15}, {16,17,18,19,20}},
%e {{1,2,3,4,5}, {6,7,8,9,10}, {11,13,15,17,19}, {12,14,16,18,20}},
%e {{1,3,5,7,9}, {2,4,6,8,10}, {11,13,15,17,19}, {12,14,16,18,20}},
%e {{1,5,9,13,17}, {2,4,6,8,10}, {3,7,11,15,19}, {12,14,16,18,20}},
%e {{1,2,3,4,5}, {6,9,12,15,18}, {7,10,13,16,19}, {8,11,14,17,20}},
%e {{1,3,5,7,9}, {2,6,10,14,18}, {4,8,12,16,20}, {11,13,15,17,19}},
%e {{1,5,9,13,17}, {2,6,10,14,18}, {3,7,11,15,19}, {4,8,12,16,20}}.
%p b:= proc(s, t) option remember; `if`(s={}, 1, (m-> add(
%p `if`({seq(m-h*j, h=1..4)} minus s={}, b(s minus {seq(m-h*j,
%p h=0..4)}, t), 0), j=1..min(t, iquo(m-1, 4))))(max(s)))
%p end:
%p a:= proc(n) option remember; forget(b): b({$1..5*n}, n) end:
%p seq(a(n), n=0..10);
%t b[s_, t_] := b[s, t] = If[s == {}, 1, Function[m, Sum[If[Union[Table[m - h*j, {h, 1, 4}] ~Complement~ s] == {}, b[s ~Complement~ Union[Table[m - h*j, {h, 0, 4}]], t], 0], {j, 1, Min[t, Quotient[m-1, 4]]}]][Max[s]]];
%t a[n_] := a[n] = b[Range[5n], n];
%t Table[Print[n, " ", a[n]]; a[n], {n, 0, 15}] (* _Jean-François Alcover_, May 16 2022, after _Alois P. Heinz_ *)
%Y Cf. A000567 (number of subsets), A008587 (number of elements), A104431 (when k is unbounded), A337520.
%Y Main diagonal of A360491.
%K nonn,more
%O 0,3
%A _Alois P. Heinz_, Nov 17 2021
%E a(22) from _Alois P. Heinz_, Nov 23 2022