login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349358
Dirichlet inverse of A064216, which is A064989(2n-1), where A064989 is fully multiplicative with a(2) = 1 and a(p) = prevprime(p) for odd primes p.
3
1, -2, -3, -1, -4, 5, -11, 6, -4, -1, -10, 3, -9, 36, 1, -24, -14, 25, -31, 38, 29, -1, -12, -29, -9, 10, 4, -11, -34, 53, -59, 62, 27, -5, 50, -41, -71, 106, 19, -83, -16, -125, -39, 98, 51, -7, -58, 184, 32, 112, -13, -15, -30, -84, -27, -170, 77, 79, -44, -109, -49, 162, 184, -84, -10, 31, -85, 192, -59, -75, -86
OFFSET
1,2
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d < n} A064216(n/d) * a(d).
a(n) = A349359(n) - A064216(n).
PROG
(PARI)
A064989(n) = { my(f = factor(n)); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
A064216(n) = A064989((2*n)-1);
memoA349358 = Map();
A349358(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349358, n, &v), v, v = -sumdiv(n, d, if(d<n, A064216(n/d)*A349358(d), 0)); mapput(memoA349358, n, v); (v)));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 17 2021
STATUS
approved