login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A265755 a(n) = a(n-1) + a(n-2) if n is even and a(n) = a(n-3) + a(n-4) if n is odd, with a(0) = a(1) = a(2) = 0 and a(3) = 1. 1
0, 0, 0, 1, 1, 0, 1, 2, 3, 1, 4, 5, 9, 5, 14, 14, 28, 19, 47, 42, 89, 66, 155, 131, 286, 221, 507, 417, 924, 728, 1652, 1341, 2993, 2380, 5373, 4334, 9707, 7753, 17460, 14041, 31501, 25213, 56714, 45542, 102256, 81927, 184183, 147798, 331981, 266110, 598091, 479779, 1077870, 864201, 1942071, 1557649 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,1,0,2,0,-1).

FORMULA

From Colin Barker, Dec 16 2015: (Start)

a(n) = a(n-2) + 2*a(n-4) - a(n-6) for n>5.

G.f.: x^3*(1+x-x^2) / (1-x^2-2*x^4+x^6).

(End)

EXAMPLE

a(8) = a(7) + a(6)

     = a(4) + a(3) + a(5) + a(4)

     = (a(3) + a(2)) + a(3) + (a(2) + a(1)) + (a(3) + a(2))

     = 1 + 1 + 0 + 1

     = 3

MATHEMATICA

a[0] = a[1] = a[2] = 0; a[3] = 1; a[n_] := a[n] = If[EvenQ@ n, a[n - 1] + a[n - 2], a[n - 3] + a[n - 4]]; Table[a@ n, {n, 0, 55}] (* Michael De Vlieger, Dec 15 2015 *)

nxt[{n_, a_, b_, c_, d_}]:={n+1, b, c, d, If[OddQ[n], c+d, a+b]}; NestList[nxt, {1, 0, 0, 0, 1}, 60][[All, 2]] (* or *) LinearRecurrence[{0, 1, 0, 2, 0, -1}, {0, 0, 0, 1, 1, 0}, 60] (* Harvey P. Dale, Nov 10 2017 *)

PROG

(PARI) concat(vector(3), Vec(x^3*(1+x-x^2)/(1-x^2-2*x^4+x^6) + O(x^70))) \\ Colin Barker, Dec 16 2015

CROSSREFS

Interleaves A006053 and A052547, with an extra leading 0.

A187066 with even values and odd values swapped and an extra leading 0.

Sequence in context: A071517 A305433 A257681 * A330139 A046671 A178760

Adjacent sequences:  A265752 A265753 A265754 * A265756 A265757 A265758

KEYWORD

nonn,easy

AUTHOR

Nicholas Drozd, Dec 15 2015

EXTENSIONS

More terms from Michael De Vlieger, Dec 15 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 3 01:31 EDT 2020. Contains 333195 sequences. (Running on oeis4.)