login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348938
Odd numbers k for which A064989(sigma(k)) < A064989(k), and which are of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1.
2
153, 245, 261, 369, 425, 477, 637, 725, 801, 833, 845, 873, 909, 981, 1017, 1025, 1233, 1325, 1341, 1377, 1421, 1557, 1573, 1629, 1773, 1805, 1813, 2009, 2057, 2061, 2097, 2169, 2225, 2313, 2349, 2421, 2425, 2525, 2529, 2597, 2637, 2645, 2725, 2853, 2873, 2989, 3141, 3177, 3321, 3357, 3425, 3501, 3509, 3577, 3609, 3681
OFFSET
1,1
COMMENTS
Obviously, any hypothetical odd perfect number would be neither in this sequence nor in A348939.
Of the numbers in range 1..2^20, 9644 reside in this sequence and 3865 in A348939. Of the numbers <= 2^25, 229480 are in this sequence, and 88270 in A348939.
MATHEMATICA
q[n_] := Module[{f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]]; odde = Select[e, OddQ]; Length[e] > 1 && Length[odde] == 1 && Divisible[odde[[1]] - 1, 4] && Divisible[p[[Position[e, odde[[1]]][[1, 1]]]] - 1, 4]]; f[2, e_] := 1; f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[1, 4000, 2], q[#] && s[DivisorSigma[1, #]] < s[#] &] (* Amiram Eldar, Nov 04 2021 *)
PROG
(PARI)
A064989(n) = { my(f = factor(n)); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f) };
isA228058(n) = if(!(n%2)||(omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y));
isA348748(n) = ((n%2)&&(A064989(sigma(n)) < A064989(n)));
isA348938(n) = (isA228058(n)&&isA348748(n));
CROSSREFS
Intersection of A228058 and A348748.
Sequence in context: A352222 A253023 A194660 * A159294 A332228 A349755
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 04 2021
STATUS
approved