login
A159294
Number of ways that a 1 X n rectangular tile T, marked into n unit squares, can be surrounded by one layer of copies of itself laid in the plane grid generated by the units of T. Ways that differ by rotation or reflection are not counted as different. The surrounded tile is the exact surrounded region.
2
1, 153, 301, 517, 825, 1234, 1774, 2454, 3310, 4351, 5619, 7123, 8911, 10992, 13420, 16204, 19404, 23029, 27145, 31761, 36949, 42718, 49146, 56242, 64090, 72699, 82159, 92479, 103755, 115996
OFFSET
1,2
FORMULA
For n>1, a(n) = (1/16)*(n^4 + 30*n^3 + 246*n^2 + 476*n + 256 + (1 if n odd, 0 if n even)*(6*n + 9)).
G.f.: -x*(63*x^7-173*x^6+15*x^5+335*x^4-228*x^3-157*x^2+150*x+1) / ((x-1)^5*(x+1)^2). - Colin Barker, Nov 26 2012
MATHEMATICA
Join[{1, 153}, LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {301, 517, 825, 1234, 1774, 2454, 3310}, 49]] (* G. C. Greubel, Jun 27 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(-x*(63*x^7-173*x^6+15*x^5 +335*x^4 -228*x^3 - 157*x^2+150*x+1)/((x-1)^5*(x+1)^2)) \\ G. C. Greubel, Jun 27 2018
(Magma) I:=[301, 517, 825, 1234, 1774, 2454, 3310]; [1, 153] cat [n le 7 select I[n] else 3*Self(n-1) -Self(n-2) -5*Self(n-3) +5*Self(n-4) + Self(n-5) -3*Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, Jun 27 2018
CROSSREFS
Cf. A159295 for analogous problem for strip-of-hexagons tile.
Sequence in context: A253023 A194660 A348938 * A332228 A349755 A066528
KEYWORD
nonn,easy
AUTHOR
David Pasino, Apr 09 2009
STATUS
approved